八年级数学小班教案(收藏7篇)。
作为一名无私奉献的老师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。那么大家知道正规的教案是怎么写的吗?下面是小编帮大家整理的八年级数学教案,希望能够帮助到大家。
八年级数学小班教案 篇1
一、内容和内容解析
1.内容
三角形中相关元素的概念、按边分类及三角形的三边关系。
2.内容解析
三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解。
本节课的教学重点:三角形中的相关概念和三角形三边关系。
本节课的教学难点:三角形的三边关系。
二、目标和目标解析
1.教学目标
(1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素。
(2)理解并且灵活应用三角形三边关系。
2.教学目标解析
(1)结合具体图形,识三角形的概念及其基本元素。
(2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类。
(3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题。
三、教学问题诊断分析
在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神。
四、教学过程设计
1、创设情境,提出问题
问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义。
师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解.
【设计意图】三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解。
2、抽象概括,形成概念
动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义。
师生活动:
三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
【设计意图】让学生体会由抽象到具体的过程,培养学生的语言表述能力。
补充说明:要求学生学会三角形、三角形的`顶点、边、角的概念以及几何表达方法。
师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡。
【设计意图】进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用。
3、概念辨析,应用巩固
如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来。
1.以AB为一边的三角形有哪些?
2.以∠D为一个内角的三角形有哪些?
3.以E为一个顶点的三角形有哪些?
4.说出ΔBCD的三个角。
师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解。
4、拓广延伸,探究分类
我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法。
师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解。
八年级数学小班教案 篇2
教学目标
1.知识与技能
领会运用完全平方公式进行因式分解的方法,发展推理能力.
2.过程与方法
经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.
3.情感、态度与价值观
培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.
重、难点与关键
1.重点:理解完全平方公式因式分解,并学会应用.
2.难点:灵活地应用公式法进行因式分解.
3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的'目的
教学方法
采用“自主探究”教学方法,在教师适当指导下完成本节课内容.
教学过程
一、回顾交流,导入新知
【问题牵引】
1.分解因式:
(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
【知识迁移】
2.计算下列各式:
(1)(m-4n)2;(2)(m+4n)2;
(3)(a+b)2;(4)(a-b)2.
【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.
3.分解因式:
(1)m2-8mn+16n2(2)m2+8mn+16n2;
(3)a2+2ab+b2;(4)a2-2ab+b2.
【学生活动】从逆向思维的角度入手,很快得到下面答案:
解:
(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;
(4)a2-2ab+b2=(a-b)2.
【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例学习,应用所学
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;(4)+n4.
【例2】如果x2+axy+16y2是完全平方,求a的值.
【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.
三、随堂练习,巩固深化
课本P170练习第1、2题.
【探研时空】
1.已知x+y=7,xy=10,求下列各式的值.
(1)x2+y2;(2)(x-y)2
2.已知x+=-3,求x4+的值.
四、课堂总结,发展潜能
由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2.
在运用公式因式分解时,要注意:
(1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解.
五、布置作业,专题突破
八年级数学小班教案 篇3
教学目标:
1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。
2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。
3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。
4、能利和计算器求一组数据的算术平均数。
教学重点:
体会平均数、中位数、众数在具体情境中的意义和应用。
教学难点:
对于平均数、中位数、众数在不同情境中的应用。
教学方法:
归纳教学法。
教学过程:
一、知识回顾与思考
1、平均数、中位数、众数的概念及举例。
一般地对于n个数X1……Xn把(X1+X2+…Xn)叫做这n个数的算术平均数,简称平均数。
如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。
中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。
众数就是一组数据中出现次数最多的那个数据。
如3,2,3,5,3,4中3是众数。
2、平均数、中位数和众数的特征:
(1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。
(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。
(3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。
(4)众数的.可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。
3、算术平均数和加权平均数有什么区别和联系:
算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。
4、利用计算器求一组数据的平均数。
利用科学计算器求平均数的方法计算平均数。
二、例题讲解:
某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?
三、课堂练习:
复习题A组
四、小结:
1、掌握平均数、中位数与众数的概念及计算。
2、理解算术平均数与加权平均数的联系与区别。
五、作业:
复习题B组、C组(选做)
八年级数学小班教案 篇4
一、学情分析
本学期本人继续担任八年级(2)班的数学教学工作,八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。从上期期末考试的成绩来看1班、2班的成绩差异很大,2班有少数学生不上进,思维不紧跟老师,有部分同学基础较差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
二、教材分析
本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:
第十七章分式
本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。
第十八章函数及其图像
函数是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函数后,进一步研究反比例函数。学生在本章中经历:反比例函数概念的抽象概括过程,体会建立数学模型的思想,进一步发展学生的抽象思维能力;经历反比例函数的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一;经历本章的重点之二:利用反比例函数及图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别应用过程,发展学生形象思维;能根据所给信息确定反比例函数表达式,会作反比例函数图象,并利用它们解决简单的实际问题。本章的难点在于对学生抽象思维的培养,以及提高数形结合的意识和能力。
第十九章全等三角形
本章主要内容是探索三角形全等的判定方法,领略推理证明的奥秘,由于三角形全等的判定方法与全等三角形的性质具有“互逆”的特点,所以本章因势利导,介绍了命题与定理、逆命题与逆命题的'有关知识。此外,本章教材最后还介绍了几种常用的基本作图和简单的尺规作图的方法。
第二十章平行四边形的判定
本章的内容包括平行四边形的判定;矩形、菱形、正方形等几种特殊平行四边形的判定;等腰梯形的判定等几个部分。本章首先通过回顾平行四边形的性质,由性质引出判定方法,在此基础上,学习矩形、菱形、正方形等特殊平行四边形的判定,最后介绍了等腰梯形的判定与应用。本章知识是在学习了平行线、三角形、平行四边形的性质等知识的基础上的进一步深化和提高,是今后学习其他几何知识的基础。
第二十一章数据的整理与初步处理
本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。
三、提高学科教育质量的主要措施:
1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。
4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
7、指导成立“课外兴趣小组”的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。
8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。
9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。
10、培养学生学习数学的良好习惯。这些习惯包括:
①认真做作业的习?包括作业前清理好桌面,作业后认真检查;
②预习的习惯;
③认真看批改后的作业并及时更正的习惯;
④认真做好课前准备的习惯;
⑤在书上作精要笔记的习惯;
⑥妥善保管书籍资料和学习用品的习惯;
⑦认真阅读数学教材的习惯。
八年级数学小班教案 篇5
平方差公式
学习目标:
1、能推导平方差公式,并会用几何图形解释公式;
2、能用平方差公式进行熟练地计算;
3、经历探索平方差公式的推导过程,发展符号感,体会特殊一般特殊的认识规律.
学习重难点:
重点:能用平方差公式进行熟练地计算;
难点:探索平方差公式,并用几何图形解释公式.
学习过程:
一、自主探索
1、计算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)
(3) (x+5y)(x-5y) (4)(y+3z) (y-3z)
2、观察以上算式及其运算结果,你发现了什么规律?再举两例验证你的发现.
3、你能用自己的语言叙述你的发现吗?
4、平方差公式的特征:
(1)、公式左边的两个因式都是二项式。必须是相同的两数的和与差。或者说两 个二项式必须有一项完全相同,另一项只有符号不同。
(2)、公式中的.a与b可以是数,也可以换成一个代数式。
二 、试一试
例1、利用平方差公式计算
(1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n)
例2、利用平方差公式计算
(1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2
三、合作交流
如图,边长为a的大正方形中有一个边长为b的小正方形.
(1)请表示图中阴影部分的面积.
(2)小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗? a a b
(3)比较(1)(2)的结果,你能验证平方差公式吗?
四、巩固练习
1、利用平方差公式计算
(1)(a+2)(a-2) (2)(3a+2b)(3a-2b)
(3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)
2、利用平方差公式计算
(1)803797 (2)398402
3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )
A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以
4.下列多项式的乘法中,可以用平方差公式计算的是( )
A.(a+b)(b+a) B.(-a+b)(a-b)
C.( a+b)(b- a) D.(a2-b)(b2+a)
5.下列计算中,错误的有( )
①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;
③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.
A.1个 B.2个 C.3个 D.4个[来源:中.考.资.源.网WWW.ZK5U.COM]
6.若x2-y2=30,且x-y=-5,则x+y的值是( )
A.5 B.6 C.-6 D.-5
7.(-2x+y)(-2x-y)=______.
8.(-3x2+2y2)(______)=9x4-4y4.
9.(a+b-1)(a-b+1)=(_____)2-(_____)2.
10.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.
11.利用平方差公式计算:20 19 .
12.计算:(a+2)(a2+4)(a4+16)(a-2).
五、学习反思
我的收获:
我的疑惑:
六、当堂测试
1、下列多项式乘法中能用平方差公式计算的是( ).
(A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[
2、填空:(1)(x2-2)(x2+2)=
(2)(5x-3y)( )=25x2-9y2
3、计算:
(1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4)
4.利用平方差公式计算
①1003997 ②14 15
七、课外拓展
下列各式哪些能用平方差公式计算?怎样用?
1) (a-b+c)(a-b-c)
2) (a+2b-3)(a-2b+3)
3) (2x+y-z+5)(2x-y+z+5)
4) (a-b+c-d)(-a-b-c-d)
2.2完全平方公式(1)
八年级数学小班教案 篇6
创设情境
1.什么叫平行四边形?平行四边形有什么性质?
2.将以上的性质定理,分别用命题形式叙述出来。
根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?
探究归纳
平行四边形的.判定方法:
证明:两组对边分别相等的四边形是平行四边形
已知:
求证:
做一做:将四根细木条(其中两条长相等,另外两条长也相等)用小钉子钉在一起,做成一个四边形,使等长的木条成为对边。它是平行四边形吗?
学生交流:把你做的四边形和其他同学做的进行比较,看看是否都是平行四边形。
观察发现:尽管每个人取的边长不一样,但只要对边分别相等,所作的都是平行四边形
练习:如图,在ABCD中,E,F,G和H分别是各边中点.求证:四边形EFGH为平行四边形
八年级数学小班教案 篇7
菱形
学习目标(学习重点):
1.经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;
2.运用菱形的识别方法进行有关推理.
补充例题:
例1. 如图,在△ABC中,AD是△ABC的角平分线。DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.
例2.如图,平行四边形ABCD的对 角线AC的垂直平分线与边AD、BC分别交于E、F.
四边形AFCE是菱形吗?说明理由.
例3.如图 , ABCD是矩形纸片,翻折B、D,使BC、AD恰好落在AC上,设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点
(1)试说明四边形AECG是平行四边形;
(2)若AB=4cm,BC=3cm,求线段EF的.长;
(3)当矩形两边AB、BC具备怎样的关系时,四边形AECG是菱形.
课后续助:
一、填空题
1.如果四边形ABCD是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形
2.如图,D、E、F分别是△ABC的边BC、CA、AB上的点,
且DE∥BA,DF∥ CA
(1)要使四边形AFDE是菱形,则要增加条件______________________
(2)要使四边形AFDE是矩形,则要增加条件______________________
二、解答题
1.如图,在□ABCD中 ,若2,判断□ABCD是矩形还是菱形?并说明理由。
2.如图 ,平行四边形A BCD的两条对角线AC,BD相交于点O,OA=4,OB=3,AB=5.
(1) AC,BD互相垂直吗?为什么?
(2) 四边形ABCD是菱形 吗?
3.如图,在□ABCD中,已知ADAB,ABC的平分线交AD于E,EF∥AB交BC于F,试问: 四 边形ABFE是菱形吗?请说明理由。
4.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.
⑴求证:ABF≌
⑵若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.