解方程五年级教案
发表时间:2025-05-12解方程五年级教案(范例二篇)。
解方程五年级教案 篇1
教学内容:
数学书P58-P59及“做一做”,练习十一第5-7题。
教学目标:
1、 结合具体图例,根据等式不变的规律会解方程。
2、 掌握解方程的格式和写法。
3、 进一步提高学生分析、迁移的能力。
教学重难点:
掌握解方程的方法。
教学过程:
一、导入新课
二、新知学习
(一) 教学例1
出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9
要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式
方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3
化简,即得: x=6
这就是方程的解,谁再来回顾一下我们是怎样解方程的?
左右两边同时减去的为什么是3,而不是其它数呢?
追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。
要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。
板书:方程左边=x+3=6+3=9=方程右边
所以, x=6是方程的解。
小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的`过程中写的都是等式,而不是递等式。
(二) 教学例2
利用等式不变的规律,我们再来解一个方程。
出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。
抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。
展示、订正。
通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?
(三) 反馈练习
1、 完成“做一做”的第1题。
2、 试着解方程:x-2.4=6 x÷9=0.7 (强调验算)
三、课堂小结。
这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?
四、作业:练习十一5—7题。
解方程教学反思
在本节课中我力图直观,让学生在直观的操作与演示中自主建构。同时借助观察、操作、猜想与验证,一方面来促使学生进一步理解等式的性质,能利用等式的性质来解方程,同时也让学生抽象方程,解释算理中来经历代数的过程,发展学生的数感及数学素养。
1、在具体情境中理解算理,经历代数的过程。
本节课属于典型的计算课,所以算理与算法是二条主线,今天的算法主要是突破学生原有的认知,能够利用天平的原理来解方程,所以理解算理,让学生体验到解方程只要使天平的一边剩下一个未知数,但要在这个变化中必须使天平保持平衡,可以通过在天平的左右二边同时减去相同的数是本节课的重点。我通过创设情境,让学生来领悟算理,突显出本节课的重点。
2、在直观操作中掌握方法,发展数学素养。
在本节课中,通过充分的直观,利用学生熟悉的素材,力图把方程建构于天平之中,在学生的头脑中建立深刻的模像。同时,在让学生用自己的生活,用自己的操作解释、验证中发展学生的数学素养。
3、困惑:纵观学生的起点,他们已经具有丰富的生活经验与知识背景来解简单的方程,所以在教学中运用“逆运算”来解方程对于采用天平的原理来解方程造成了相当的冲突,部分学生虽然对于运用天平原理来解方程已经十分理解,但他们还是不愿意用这种方法,主要的原因是他们体验不到这种方法的优越性,所以如何在本节课中让学生体验到天平原理的优越性,从而自愿的采用这种方法,没有好的策略?
解方程五年级教案 篇2
学习内容:
人教版五年级上册p57-59页
学习目标:
1、通过操作、演示,进一步理解等式的性式,并能用等式的性质解简单的方程,在解方程的过程中,初步理解方程的解与解方程。
2、通过创设情境,经历从具体抽象为代数问题的过程,渗透代数化思想,并通过验算,促进良好学习习惯的养成。
3、在观察、猜想、验证等数学活动中,发展学生的数学素养。
学习重点:
用等式的的性质解方程,理解算理
学习过程:
一、创设情境,引出方程
1、研究例1:
猜球游戏:出示一个乒乓球盒,猜里面有几个球?引导学生用字母来表示球数?
导语:要想精确知道多少个球?再给大家一些信息(课件出示:天平左边盒子和二个球,右边有七个球)F215.Com
设问:能用一个方程来表示吗?板书x+2=6
- f215.com小编精心推荐:
- 五年级解方程课件教案 | 五年级解方程说课稿 | 五年级解方程教学反思 | 解方程教案 | 解方程五年级教案 | 解方程五年级教案
二、探究算理
设问:你们知道x等于多少吗?那这个答案4你们是怎么想出来的吗?说说你们的想法?
预设:a、7-4=2;b、4+2=7,所以x=4,c、左右二边都拿掉二个乒乓球,右边还剩下4个,所以x=4
研究第三种想法:设问:左右同时拿个二个乒乓球天平会怎么样?
学生上台用天平演示
请学生们把刚才的过程用式子表示出来,板书:x+2-2=6-2
追问:你怎么想到是拿到二个乒乓球,而不是拿到一个或者三个呢?
尝试验算:板书:左边=4+2=6=右边,所以我们就说x=4是方程的解,板书方程的解,尝试说说方程的解;刚才我们求方程的解的'过程叫做解方程。(可以自学书本)
讲解解方程的书写格式(与天平相对应)
小结:刚才我们用了好多方法来解方程,重点研究了第三种解方程的方法,这种方法我们用到了什么知识?课件再次演示后,得出方程的两边同时去掉相同的数,左右两边仍相等。
尝试:解方程:x-1=3,
想一想:如果要用天平的乒乓球,如何来表示出这个方程?
指名摆一摆,学生尝试解决,并用操作来验证
2、研究例2:3x=18
学生尝试后出示:3x÷3=12÷3
用小棒操作后交流后想法:方程的左右二同时除以一个相同的数(零除外),左右二边仍旧相等。
展示,课件演示后小结:方程的左右二边可以同时除以相同的数(零除外),左右二边仍旧相等,追问得到还可以同时乘以一个相同的数
总结:解方程时,我们都是想使方程的一边只剩下一个x,而且在这个过程中还要使方程保持平衡,我们可以采用……
三、巩固练习:
1、p59页1
2、后面括号中哪个是x的值是方程的解?
(1)x+32=76 (x=44, x=108)
(2)12-x=4 (x=16, x=8)
3、解方程
p59页第2题的前面四题,要求口头验算
四、总结:
五、机动:研究练习2中的第二题,怎么用今天的方法来解方程。
- 更多精彩的解方程五年级教案,欢迎继续浏览:解方程五年级教案